OEM&Lieferant 2/2023

43 te auf Autobahnen in deutlich größerer Entfernung zuverlässig erkennen, wohingegen der nahe Bereich, in dem sich ein potentielles Hindernis befinden kann, im städtischen Umfeld größer ist. Doch sind die ADAS-Funktionen der unterschiedlichen Hersteller dazu überhaupt in der Lage? Um dies herauszufinden, legten die Forschenden den Fokus auf die Trajektorienplanung. Für den Einsatzort Deutschland definierten sie drei Fahrszenarien mit variierenden Anforderungen an das ACC: Autobahn (130 km/h Richtgeschwindigkeit), Landstraße (max. 100 km/h) und Stadtverkehr (max. 50 km/h). Für ihre Analyse zogen die Experten insgesamt sechs Datensätze heran, darunter große Modelle, die seit Jahren von namhaften OEMs genutzt werden: ONCE, nuScenes, A2D2, LyftLevel5, Waymo und Kitti. Ziel war zunächst, die statistische Verteilung der annotierten Objekte herauszufinden, die das System erkennen kann. Dabei spielten etwa die Größe der zur Annotation genutzten Bounding Boxes, das Verhältnis zwischen ihrer Größe und Entfernung zueinander, der Abstand zwischen dem Fahrzeug und anderen Objekten sowie deren relative Positionsverteilung auf dem Sensor und der optische Fluss der Bildsequenzen eine Rolle. Mithilfe dieser Parameter ermittelten die Forschenden, wie präzise die Objekte annotiert und entsprechend mit Bounding Boxes versehen wurden. Zudem untersuchten sie, wie gut die Kamerasensoren der Fahrzeuge auf ihre operativen Einsatzbereiche eingestellt waren und welchen Anteil z. B. Stehphasen ausmachen, bei denen über einen längeren Zeitraum (nahezu) statische Bilder erfasst wurden. Optimierung der untersuchten Datensätze Die Ergebnisse der Analysen und die daraus abgeleitete Qualität der Datensätze überraschten die Machine Learning-Spezialisten von ARRK Engineering – in negativer Hinsicht. So entdeckten sie etwa unerwartet viele statische Bilder aus Stau- und Stehphasen, die nicht als solche markiert waren und daher die Detektor-Trainings der ACCs negativ beeinflussen können. Im Gegensatz dazu ließen alle untersuchten Datenmodelle annotierte Objekte in größeren Entfernungen ab rund 100 m komplett vermissen. Aufgrund der kurzen TTC bei Geschwindigkeiten von etwa 130 km/h ist das zuverlässige Erkennen von derart weit entfernten Hindernissen allerdings unabdingbar für den sicheren Einsatz des Fahrerassistenzsysteme auf Autobahnen in der Bundesrepublik. Zudem ist die Annotation der Objekte oftmals ungenau, da viele Personen mit unterschiedlichen Herangehensweisen an den Datensätzen arbeiten. Um dies auszugleichen, werden die Bounding Boxes großzügiger als nötig festgelegt und überlappen sich häufig. Dies macht es für die Systeme wiederum schwieriger, Hindernisse auszumachen, und verlängert die Trainingsprozesse drastisch. Ziel der Forschenden ist es nunmehr, die mangelhafte Qualität der Datensätze im Hinblick auf die Entwicklung von Fahrerassistenzsysteme der Levels 2 und 3 zu steigern. Daher entwickelten sie einen Ansatz, um die Modelle in Bezug auf die operativen Einsatzbereiche der Systeme zu validieren und ihre Defizite entsprechend zu korrigieren. Indem z. B. Aufnahmen mit deutlich überlappenden Bounding Boxes sowie statische Bilder eliminiert werden, lässt sich die Präzision und Generalisierung der Detektortrainings erhöhen. Zudem ermöglichen die Untersuchungsergebnisse, die Tauglichkeit eines Datensatzes für ein konkretes Einsatzszenario überhaupt erst festzustellen und bei den Trainings entsprechend zu berücksichtigen bzw. zu ergänzen. Im Fall des ACC betrifft dies etwa Fahrten innerorts, auf dem Land oder auf Autobahnen. Indem die Kamerasensoren zudem besser auf das tatsächliche Verkehrsgeschehen hin ausgerichtet werden, lassen sich die Effizienz der Berechnungen und somit auch die Reaktionszeit des ACC verbessern. Höhere Sicherheit auf den Straßen dank validierter Datensätze Datensätze, die mit den neuentwickelten Ansätzen von ARRK Engineering validiert werden, ermöglichen es, die erforderlichen Iterationsschleifen im Trainingsprozess und somit die gesamte Entwicklungsdauer der Fahrerassistenzsysteme maßgeblich zu reduzieren. Durch effizientere Trainings lässt sich also bereits im Development wertvolle Zeit einsparen. Hinzu kommt, dass präzise auf ihren operativen Einsatzbereich hin trainierte Systeme auch eine höhere funktionale Sicherheit aufweisen. So kann das ACC im praktischen Einsatz etwa bewegte Objekte sowie stillstehende Hindernisse zuverlässiger erkennen und rechtzeitig entsprechende Brems- oder Ausweichmanöver initiieren. Insbesondere im Hinblick darauf, dass sich auf dem Weg zum autonomen Fahren in Zukunft immer mehr und hochfunktionalere Fahrerassistenzsysteme auf unseren Straßen bewegen, erhöht sich so die allgemeine Sicherheit im täglichen Straßenverkehr. Das Paper wurde im Rahmen der Konferenz SafeAI 2023 vorgestellt Fachvortrag PDF ARRK Engineering Die Annotation der Objekte ist oftmals ungenau, da viele Personen mit unterschiedlichen Herangehensweisen an den Datensätzen arbeiten. Um dies auszugleichen, werden die Bounding Boxes großzügiger als nötig festgelegt und überlappen sich häufig. Heatmaps visualisieren die Verteilung der annotierten Objekte über die gesamte Sensorfläche und zeigen, dass 99,9 Prozent der Objekte lediglich in der unteren Hälfte erfasst werden. Bild: © ARRK Engineering Bild: © ARRK Engineering

RkJQdWJsaXNoZXIy MjUzMzQ=